Parallel-FST: A feature selection library for multicore clusters
نویسندگان
چکیده
Feature selection is a subfield of machine learning focused on reducing the dimensionality datasets by performing computationally intensive process. This work presents Parallel-FST, publicly available parallel library for feature that includes seven methods which follow hybrid MPI/multithreaded approach to reduce their runtime when executed high performance computing systems. Performance tests were carried out 256-core cluster, where Parallel-FST obtained speedups up 229x representative and it was able analyze 512 GB dataset, not previously possible with sequential counterpart due memory constraints.
منابع مشابه
Proposed Feature Selection for Dynamic Thermal Management in Multicore Systems
Increasing the number of cores in order to the demand of more computing power has led to increasing the processor temperature of a multi-core system. One of the main approaches for reducing temperature is the dynamic thermal management techniques. These methods divided into two classes, reactive and proactive. Proactive methods manage the processor temperature, by forecasting the temperature be...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملParleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Parallel and Distributed Computing
سال: 2022
ISSN: ['1096-0848', '0743-7315']
DOI: https://doi.org/10.1016/j.jpdc.2022.06.012